

Датчики крутящего момента МА20H

Руководство по эксплуатации

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА ДАТЧИКА	3
1.1 Назначение	3
1.2 Устройство и принцип работы	3
1.3 Технические характеристики	5
1.3.1 Параметры устойчивости к климатическим и механическим внешним воздействиям	5
1.3.2 Электрические и метрологические параметры	6
1.3.3 Механические параметры и эксплуатационные ограничения	8
2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	10
2.1 Меры безопасности	10
2.2 Монтаж	10
2.3 Электрические соединения.	12
2.4 Порядок работы	14
3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	14
4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	14
5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	14
6 УТИЛИЗАЦИЯ	15
7 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ	15
8 ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	15
ПРИЛОЖЕНИЕ 1	16

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления с устройством, принципом действия и правилами использования датчиков крутящего момента (датчиков) МА20Н и удостоверяет гарантированные предприятием-изготовителем параметры и технические характеристики.

ВНИМАНИЕ! Перед установкой и включением датчика изучите настоящее руководство по эксплуатации.

1 ОПИСАНИЕ И РАБОТА ДАТЧИКА

1.1 Назначение

Датчики крутящего момента MA20H предназначены для измерения крутящего момента на неподвижных или имеющих ограниченный угол поворота валах. Особенность датчика – сквозное центральное отверстие.

Номинальный диапазон измерения: - M_E ... + M_E , где M_E – верхний предел измерений датчика¹.

Датчики MA20H имеют расширенный диапазон измерений: -1,07·M_E ... +1,07·M_E. Знак "плюс" соответствует кручению по часовой стрелке, знак "минус" — кручению против часовой стрелки.

Обозначение датчика состоит из названия серии "MA20H" и величины верхнего предела измерений, разделенных знаком " − ". При этом, моменты от 1000 H⋅м включительно указываются в кH⋅м с добавлением индекса "к".

Примеры условных обозначений:

датчика крутящего момента МА20Н с верхним пределом измерений 800 Н·м:

MA20H - 800

датчика крутящего момента МА20В с верхним пределом измерений 15 000 Н м:

MA20H -15κ

Верхний предел измерений датчика МА20В выбирается из ряда приведенного в табл. 1

Табл. 1 – Верхние пределы измерений датчиков МА20Н

						200	250	300	-
500	600	800	1κ*	1,2к	1,5к	2к	2,5к	3к	4к
5к	6к	8к	10к	12к	15к	20к	25к	30к	40к
50к	60к	80к	100к	120к	150к				
* – Индекс "к" обозначает "кH·м".									

1.2 Устройство и принцип работы

Датчик включает в себя тензоэлемент торсионного типа (торсион) с наклеенными на него тензорезисторами, плату питания и обработки данных, защитный корпус. На корпусе размещен разъем питания и передачи данных.

В процессе работы торсион датчика подвергается нагружению крутящим моментом, в результате чего происходит его деформирование и возникает разбаланс тензометрической мостовой схемы (тензомоста). Тензомост своим выходом соединен с платой, которая усиливает сигнал и преобразует его в цифровой сигнал, содержащий также идентификационный номер датчика, его температуру, служебную информацию.

Для преобразования сигнала датчика в требуемый выходной сигнал (цифровой или аналоговый) применяется вторичное оборудование — блок индикации Т42 с заданным выходным интерфейсом или декодер. Доступные варианты выходных сигналов и их параметры описаны в разделе 1.3.

Для визуального контроля за измеряемыми величинами используются блоки индикации T40 и T41.

¹ Под верхним пределом измерений понимается также "Номинальный измеряемый крутящий момент" датчика.

Рис. 1 – Внешний вид датчика МА20Н

ВНИМАНИЕ! Датчики MA20H должны использоваться совместно с инжектором E01. Инжектор входит в комплект поставки.

Инжектор Е01 (рис. 2) используется для питания датчика и передачи сигнала от датчика к вторичному оборудованию (блоку индикации или декодеру).

Рис. 2 – Внешний вид инжектора Е01

1.3 Технические характеристики

Доступные варианты выходных сигналов/интерфейсов и модели вторичных устройств, обеспечивающих их приведены в табл. 2. Габаритные и установочные размеры датчиков и инжектора показаны на рисунках 4 – 6.

Табл. 2 – Выходные сигналы/интерфейсы вторичных устройств

Выходной сигнал/интерфейс	Декодер	Блок индикации T42 ¹⁾
USB (WinUSB Device)	T45	
USB-VCOM	-	
Ethernet	-	
CAN	-	
RS-485	T46/RS-485	
RS-232	T46/RS-232	T42
±5 B, ±10 B	T24/±5 B, T24/±10 B	
420 мА активный	Т24/420 мА	
420 мА пассивный	-	
10±5 кГц	T23/10±5 кГц	
60±30 кГц	Т23/60±30 кГц	
120±60 кГц	Т23/120±60 кГц	

¹⁾ По умолчанию блок индикации T42 обеспечивает один выходной сигнал на выбор, но может поставляться с комбинацией цифрового (USB, RS-485, CAN) и аналогового выхода. Эта информация указывается при заказе. Подробнее см. документацию на блок индикации T42.

1.3.1 Параметры устойчивости к климатическим и механическим внешним воздействиям

Диапазон температур окружающей среды	°C	+5+50
Относительная влажность, не более	%	80 при 35°C
Атмосферное давление	мм рт.ст.	630800
Диапазон температур окружающей среды в транспортной таре	°C	-10+70
Относительная влажность в транспортной таре, не более	%	95 при 30°C
Допускаемая амплитуда виброускорений в диапазоне 1055Гц в течение 1 часа	M/C ²	40
Допускаемое количество ударов с пиковым ударным ускорением 400 м/с² и длительностью ударного воздействия до 10 мс		1000
Степень защиты по ГОСТ 14254-2015		IP 40

1.3.2 Электрические и метрологические параметры

Класс точности		0,2
Пределы допускаемой приведенной погрешности измерения крутящего момента, включая нелинейность и гистерезис	% от Ме	±0,2 (опция ±0,1)
Температурный уход нуля, на 10°C	% от Ме	±0,05
Разрядность АЦП	бит	16
Частота дискретизации	кГц	5
Напряжение питания постоянного тока	В	1230
Мощность потребления (датчика совместно с инжектором), не более	Вт	5
Идентификация датчика		автоматическая
Цифровой выход USB (WinUSB Device) 1)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM
Формат данных		float, fixed point
Цифровой выход USB-VCOM (USB-CDC, Virtual COM Port) 1)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM, MODBUS RTU
Формат данных		float, fixed point
Цифровой выход Ethernet 1)		
Интерфейс		10 / 100 Base-TX
Скорость передачи данных	Мбит/с	10, 100
Транспортный уровень		TCP
Протокол передачи данных		TILKOM, MODBUS TCP
Формат данных		float, fixed point
Цифровой выход CAN ¹⁾		
Интерфейс		CAN2.0B
Скорость передачи данных	кбит/с	125, 250, 500, 1000
Программируемый адрес на шине		+
Режим работы		пассивный, активный
Формат данных		float, fixed point
Цифровой выход RS-485 ¹⁾		
Интерфейс		RS485
Скорость передачи данных	бод	2 400 – 115 200
Протокол	2-14	MODBUS RTU
Проверка четности		+
Программируемый адрес на шине		+
Формат данных		float, fixed point
Цифровой выход RS-232 ¹⁾		-
Интерфейс		RS232
Скорость передачи данных	бод	2 400 – 115 200
Протокол		TILKOM
Проверка четности		+
Формат данных		float, fixed point

Аналоговый выход ±5 В (±10 В) ¹⁾		
Номинальное выходное напряжение при действии крутящего момента равного:		
положительному верхнему пределу измерений	В	+5 (+10)
отрицательному верхнему пределу измерений		-5 (-10)
нулю		0
Электрическое сопротивление нагрузки, не менее	кОм	10
Аналоговый выход 420 мА ¹⁾		
Номинальный вытекающий ток при действии крутящего момента равного		
положительному верхнему пределу измерений	мА	20
отрицательному верхнему пределу измерений		4
нулю		12
Электрическое сопротивление нагрузки активного токового выхода, не более	Ом	100
Частотный выход 10±5 кГц (60±30 кГц, 120±60 кГц) 1)		
Номинальная выходная частота при действии крутящего момента равного:		
положительному верхнему пределу измерений	кГц	15 (90) (180)
отрицательному верхнему пределу измерений	КІЦ	5 (30) (60)
нулю		10 (60) (120)
Амплитуда выходного напряжения (симметричный меандр)	В	5±1
¹⁾ При заказе вторичного устройства с данным выходом.		

1.3.3 Механические параметры и эксплуатационные ограничения

М∈, Н∙м	F _A , кН	F _R , H	М _в , Н∙м	G _{ток} , кН·м/рад	тР, кг	M _{MAX} , % ot M _E
200300	3	220	20	150	1,2	
5001,5κ*	8	1 000	80	590	2,9	
2к3к	16	2 000	150	1 050	4,5	
4к6к	28	5 000	600	2 230	7,8	
8к15к	32	10 000	600	5 600	12,8	150
20к30к	80	25 000	1 200	14 000	21,0	
40к60к	120	50 000	2 000	26 000	37,1	
80к120к	180	80 000	4 000	50 000	55,0	
150к	200	100 000	5 000	60 000	81,0	

M_E – верхний предел измерений датчика,

F_A – предельно допустимая осевая сила, приложенная к ротору,

F_R – предельно допустимая радиальная сила, приложенная к ротору,

M_B – предельно допустимый изгибающий момент, приложенный к ротору,

G_{TOR} – расчетная жесткость ротора при кручении,

тр – масса датчика

 M_{MAX} – предельно допустимый крутящий момент.

Допустимые величины внешних нагрузок (осевой и радиальной сил, изгибающего момента), действующих на ротор, взаимозависимы. Увеличение любой из нагрузок требует пропорционального уменьшения двух других. Указанная зависимость проиллюстрирована на рис. 3.

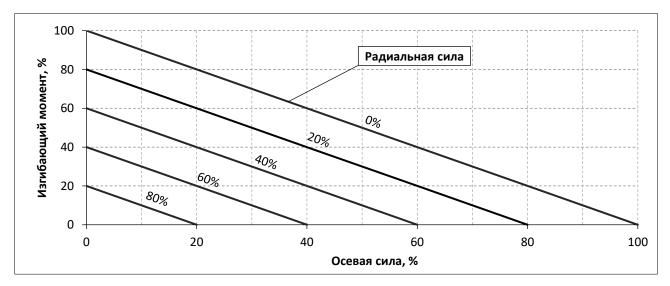


Рис. 3 – Предельно допустимые для датчиков МА20Н сочетания внешних нагрузок

^{* –} Индекс "к" обозначает "кН·м".

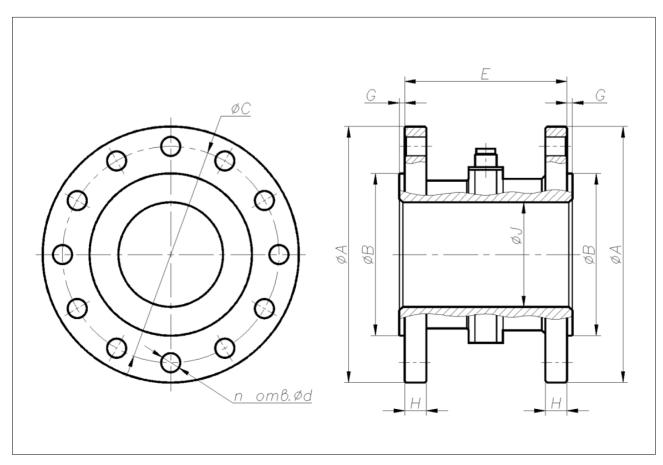


Рис. 4 – Датчики МА20Н. Габаритные и установочные размеры, мм

М _Е , Н∙м	ØA	ØB	ØC	ØD	E	F	G	Н	ØJ	n	Ød
200300	90	60g6	76±0,10	61	68	9	3+0,14	8,0	34	8	6,4H12
5001,5к	122	80g6	104±0,10	80	82	9	3+0,14	12,0	50	12	8,5H12
2к3к	142	90g6	120±0,12	92	90	9	3+0,14	13,0	60	12	10,5H12
4к6к	175	110g6	150±0,25	120	100	9	3+0,14	16,0	80	16	13H12
8к15к	200	130g6	170±0,25	138	120	9	4+0,18	19,0	100	16	17H12
20к30к	242	160g6	204±0,25	171	140	10	4+0,18	22,0	120	16	19H12
40к60к	304	210g6	260±0,25	211	170	10	5+0,18	28,0	140	16	26H12
80к120к	376	220g6	320±0,25	241	190	10	6+0,22	32,0	160	16	32H12
150к	450	260g6	395±0,25	241	190	10	8+0,22	32,0	160	16	32H12

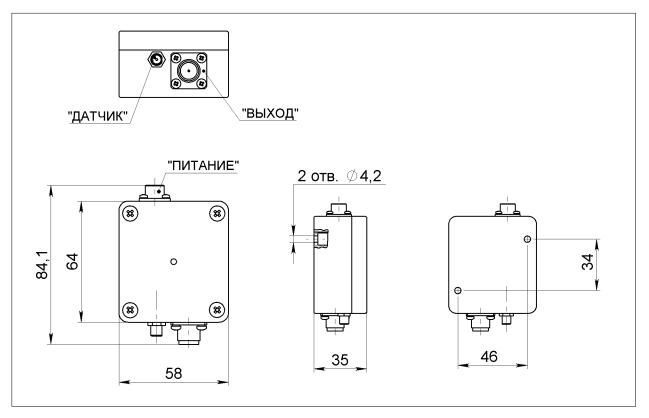
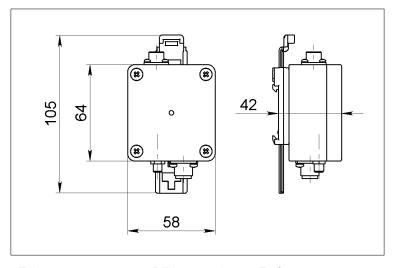



Рис. 5 – Инжектор Е01. Габаритные и установочные размеры

Рис. 6 – Инжектор E01 с креплением на DIN-рейку 35мм. Габаритные и установочные размеры

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Меры безопасности

Мероприятия по безопасным методам эксплуатации датчиков MA20B обеспечиваются общими требованиями к инструменту, с которым они используются. Напряжение питания датчиков не является опасным.

Эксплуатация датчиков крутящего момента должна осуществляться персоналом, знакомым с общими правилами работы с измерительным электронным оборудованием.

2.2 Монтаж

Поверхность фланца датчика крутящего момента и сопрягаемая поверхность должны быть сухими, чистыми, обезжиренными.

Монтаж датчика на испытательном стенде, или ином объекте с применением компенсационных муфт показан на рис. 7.

После установки датчика с применением компенсационных муфт МК, необходимо с помощью измерительных инструментов проконтролировать монтажные размеры и убедиться, что они находятся в переделах допусков. Превышение допустимых перекосов и смещений может привести к быстрому

выходу из строя компенсационных муфт. Диаметр болтов и минимальный момент затяжки приведены в табл. 3.

Датчики малочувствительны к поперечной силе и изгибающему моменту в пределах эксплуатационных ограничений указанных в п. 1.2.4. Однако при монтаже без компенсационных муфт может возникнуть смещение «нуля». В этом случае необходимо минимизировать возникшее смещение, устранив прежде всего механические факторы, а затем выполнить регулировку аппаратными методами

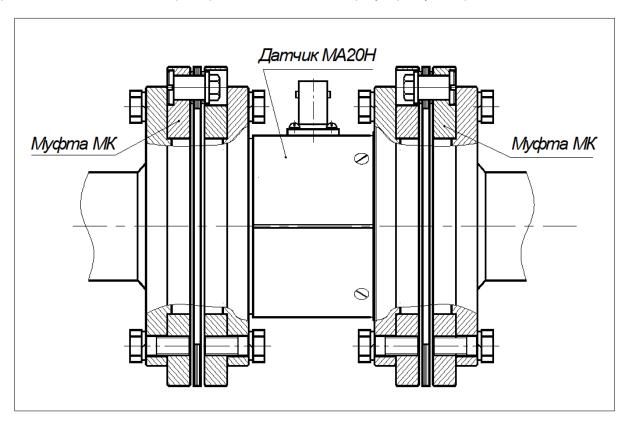
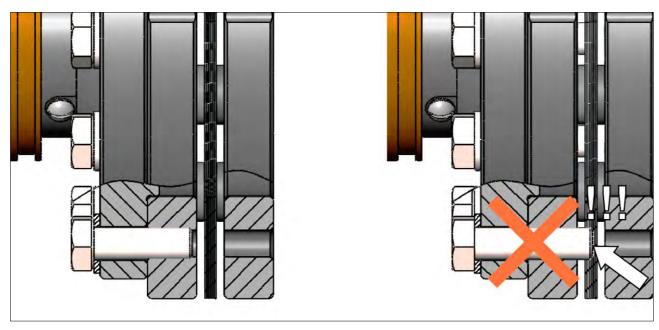



Рис. 7 – Установка датчика МА20Н с использованием компенсационных муфт

ВНИМАНИЕ! При использовании муфт МК убедитесь, что болты при затяжке не повредят диски муфты. Если болты выступают за фланец муфты со стороны дисков – используйте более короткие болты или дополнительные шайбы.

Рис. 8 – Длина крепежных болтов при использовании муфт МК: слева – **ПРАВИЛЬНАЯ**, справа – **НЕПРАВИЛЬНАЯ**

Табл. 3 – Диаметры и моменты затяжки болтов

М _Е , Н∙м	Крепежные болты DIN 933	Класс проч- ности бол- тов	Момент затяжки болтов, Н·м	Тип муфты МК	Длина болта для муфты МК, мм
200300	M6	8.8	10	MK-02	20
5001,2κ	M8	8.8	25	MK-1	25
1,5к2,5к	M10	8.8	50	MK-2	25
3к6к	M12	8.8	90	MK-5	35
8к15к	M16	10.9	200	MK-10	40
20к30к	M18	12.9	340	MK-25	45
40к60к	M24	12.9	820	MK-50	50
80к120к	M30	12.9	2200	MK-100	75
150к	M30	12.9	2200	MK-150	75

ВНИМАНИЕ! В целях повышения помехозащищённости датчика не допускается прокладка сигнального кабеля датчика совместно с силовыми кабелями.

ВНИМАНИЕ! При использовании датчика в системах с преобразователем частоты (ПЧ) может наблюдаться нестабильность в работе датчика. Для снижения влияния электромагнитных помех, вызванных работой ПЧ, необходимо использовать рекомендуемый производителем ПЧ моторный дроссель (выходной реактор, синусоидальный фильтр).

Для крепления инжектора в его корпусе предусмотрено 2 отверстия. Для доступа к ним необходимо снять крышку открутив 4 винта. Далее закрепить корпус двумя винтами М4, установить крышку на место, закрутить 4 винта.

2.3 Электрические соединения.

ВНИМАНИЕ! Перед включением датчика убедиться в отсутствии короткого замыкания в сигнальных кабелях. Проверку кабеля на наличие короткого замыкания производить только при обесточенном инжекторе и отключенном индикаторе или декодере, т.к. их вход может иметь низкое сопротивление, что может привести к ошибке при проверке.

Расположение электрических разъемов на датчике крутящего момента и инжекторе показано на рисунках 1 и 2.

Датчики MA20H поставляются с двумя сигнальными кабелями. Кабели имеют метки с номерами. Кабель «1» (длина указывается при заказе, по умолчанию 5 м) используется для подключения датчика к инжектору (рис.9).

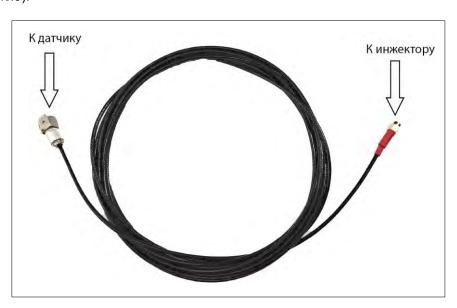


Рис. 9 – Кабель «1» для подключения датчика к инжектору

Кабель «2» (рис. 10) длиной 0,5 м используется для подключения к инжектору блока индикации или декодера.

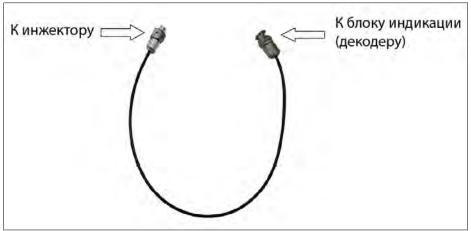


Рис. 10 – Кабель «2» для подключения к инжектору блока индикации (декодера)

Схема подключения датчика MA20H к инжектору и вторичному оборудованию показана на рис. 11. Датчик MA20H подключается к разъему «**ДАТЧИК**» инжектора сигнальным кабелем «1» из комплекта поставки. Разъем «**ВЫХОД**» инжектора используется для подключения блока индикации или декодера с помощью кабеля «2» из комплекта поставки.

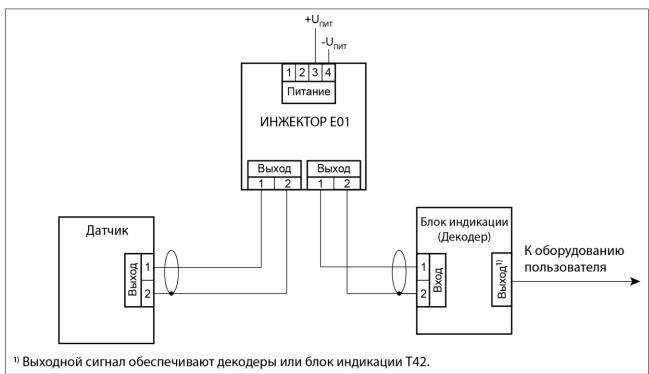


Рис. 11 – Схема подключения датчика МА20Н

К разъему «**ПИТАНИЕ**» инжектора подключается блок питания с выходным напряжением постоянного тока 12...30 В. Назначение контактов разъема «**ПИТАНИЕ**» приведено в табл. 4.

Табл. 4 — Назначение контактов разъема «ПИТАНИЕ» инжектора

	Контакт	Назначение		
241	1	не подключен		
$\left\{ \left($	2	не подключен		
	3	напряжение питания +1230 VDC		
	4	общий		

ВНИМАНИЕ! Не допускается включение датчика при наличии короткого замыкания в сигнальном кабеле.

Если электрические соединения выполнены правильно при включении питания светодиод на крышке инжектора загорится оранжевым светом.

2.4 Порядок работы

При использовании компьютера в качестве показывающего и регистрирующего прибора, включить электропитание датчика запустить программу мониторинга измерений на компьютере и производить измерения в соответствии с руководством оператора ПО «Датчик крутящего момента».

При использовании индикатора в качестве показывающего прибора, включить электропитание датчика и производить измерения и наблюдение измерений в соответствии с инструкцией по использованию блока индикации Т40 (Т42, Т41).

При каждом включении электропитания, перед проведением измерений, рекомендуется производить прогрев датчика в течение 1-2 минут.

Если непосредственно после монтажа датчика, при первом включении, наблюдается смещение нуля (в пределах $\pm 5\%$ от номинальной величины крутящего момента) и при этом отсутствует нагружение датчика крутящим моментом, необходимо произвести регулировку. Регулировка смещения нуля может быть выполнена с помощью соответствующей функции программного обеспечения, посредством соответствующей кнопки блока индикации.

ВНИМАНИЕ! Установка нуля осуществляется не в датчике, а в каждом подключенном регистрирующем устройстве (персональном компьютере, блоке индикации). Для предотвращения разночтений при одновременном использовании нескольких регистрирующих устройств, установку нуля следует производить во всех используемых устройствах одновременно при полностью разгруженном датчике.

3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

При возникновении ошибок в работе датчика и/или декодера необходимо:

- 1) убедиться в целостности сигнальных кабелей, отсутствии короткого замыкания в них и надежном присоединении разъемов;
- 2) убедиться в наличии питания инжектора;
- 3) убедиться в отсутствии помех, наведенных на шине заземления.

Для индикации состояния инжектора на его крышке установлен светодиодный индикатор. Сигналы индикатора и действия персонала описаны в табл. 5.

Искажение сигнала датчика может быть вызвано работой преобразователей частоты (или другого импульсного оборудования), особенно при их включении без фильтра. Для проверки работы датчика следует включить его при выключенных источниках помех.

ВНИМАНИЕ! Если нормальную работу датчика восстановить не удалось – обратитесь к производителю оборудования.

Сигнал индикатора	Состояние устройства	Действия персонала (при необходимости)
оранжевый	питание подключено, присутствует сигнал от датчика	-
красный	подключено питание, отсутствует сигнал от датчика	проверить состояние сигнальных кабелей
отсутствует	нет питания	проверить подключение блока питания

Табл. 5 – Индикация состояния инжектора

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Датчики МА20Н не требуют специального технического обслуживания.

5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Датчики крутящего момента до введения их в эксплуатацию следует хранить на складах при температуре окружающего воздуха от 5 до 40°C и относительной влажности до 80% при температуре 25°C.

В помещении для хранения не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Транспортирование датчиков производится любым видом транспорта в закрытых транспортных средствах.

Предельные климатические условия транспортирования приведены в пункте 1.3.1 настоящего РЭ.

6 УТИЛИЗАЦИЯ

Датчики не содержат опасных для жизни и вредных для окружающей среды веществ. Утилизация производится в порядке, принятом на предприятии-потребителе датчика.

7 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ

Датчики крутящего момента МА20Н не содержат драгметаллов.

8 ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Вместе с датчиком может быть заказано дополнительное оборудование.

Блок индикации **Т42** для визуального контроля значений измеряемых величин с возможностью выбора цифрового или аналогового выхода:

Ethernet USB CAN RS-485 RS-232 ±5 (10) B

4...20 мА (активный или пассивный) 10±5 кГц, 60±30 кГц, 120±60 кГц

Блоки индикации **T40** и **T41** (в пластиковом корпусе) для визуального контроля значений измеряемых величин.

Декодеры для получения требуемого выходного сигнала датчика (аналогового или цифрового):

USB RS485 ±5 (10) В 4...20 мА (активный) 10±5 кГц

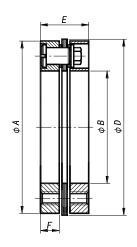
Сетевой адаптер 12... 30 В для питания датчика.

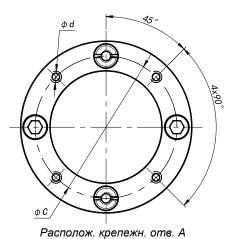
Тройник для сигнальных кабелей для подключения к датчику двух вторичных устройств (блока индикации и декодера).

Сигнальный кабель произвольной длины (до 100 м).

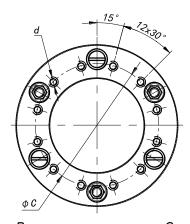
Муфты дисковые компенсационные МК для компенсации неточности монтажа и разгрузки датчика от паразитных нагрузок.

ПРИЛОЖЕНИЕ 1


Муфты дисковые компенсационные МК


Муфты дисковые серии МК предназначены для компенсации осевых, радиальных, угловых смещений, температурных деформаций, возникающих при монтаже и в ходе эксплуатации датчиков крутящего момента. Муфты МК имеют значительную осевую и угловую податливости, при высокой крутильной жесткости.

Муфты МК - универсальны и могут применяться в различных областях машиностроения для передачи крутящего момента между вращающимися валами, имеющими несоосности и перекосы осей.

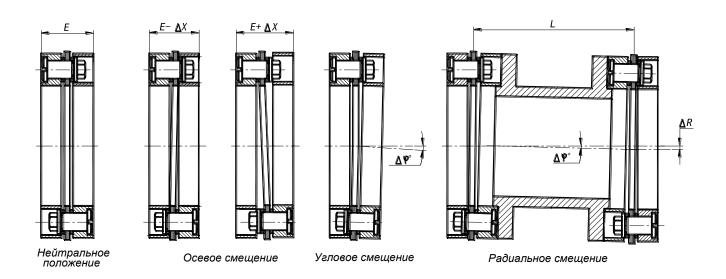

Габаритные и установочные размеры, мм 2 H·м... 250 кH·м (МК-2H... МК-250)

22, 5° d φ C φ C

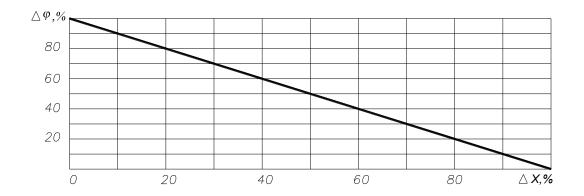
Располож. крепежн. отв. В

Располож. крепежн. отв. С

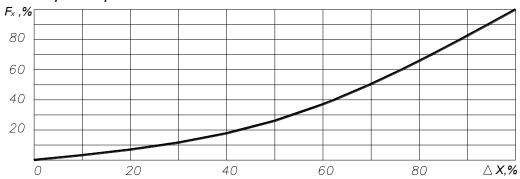
Располож. крепежн. отв. D


Тип	М _N , кН∙м	М _{МАХ} , кН·м	ØA	ØB	ØC	ØD	E	F	d	Расположение крепеж. отв.
МК-2Н	0,002	0,005	46	30H7	38±0,10	46	13,2	5,0	M3	Α
MK-002	0,02	0,05	60	40H7	50±0,10	60	16,0	6,0	M4	В
MK-01	0,1	0,2	82	50H7	66±0,10	82	22,8	9,0	M5	В
MK-02	0,2	0,4	92	60H7	76±0,10	92	26,0	10,0	M6	В
MK-1	1,0	1,8	132	80H7	104±0,10	132	32,0	12,5	M8	С
MK-2	2,0	3,6	146	90H7	120±0,12	146	34,2	13,0	M10	С
MK-5	5,0	8,5	200	110H7	150±0,25	200	41,2	16,0	M12	D
MK-10	10,0	17,0	232	130H7	170±0,25	238	51,2	19,0	M16	D
MK-25	25,0	35,0	290	160H7	204±0,25	296	66,4	25,0	M18	D
MK-50	50,0	70,0	350	210H7	260±0,25	360	80,0	30,0	M24	D
MK-100	100,0	130,0	426	220H7	320±0,25	444	100,0	38,0	M30	D
MK-150	150,0	180,0	486	260H7	395±0,25	500	109,0	42,0	M30	D
MK-250	250,0	310,0	558	320H7	420±0,25	580	128,0	50,0	M39	D

Технические характеристики


Параметр	Ед. измер.	MK-002 MK-2H	MK-01	MK-02	MK-1	MK-2	MK-5	MK-10	MK-25	MK-50	MK-100	MK-150	MK-250
Номинальный крутя- щий момент, М _N	кН∙м	0,020 0,002	0,1	0,2	1	2	5	10	25	50	100	150	300
Допускаемое осевое смещение, ±∆X _N	ММ	1,0 0,8	1,2	1,3	1,4	1,6	1,8	2,0	2,6	3,4	3,6	4,0	4,2
Осевая сила, F_{XN} , при осевом смещении, ΔX_N	Н	64 62	140	140	640	735	1630	2300	3300	4470	10500	15700	32000
Допускаемое угловое смещение, Δφ	0	1,0 1,2						0,8					
Крутильная жесткость	кН⋅м / рад	40 23	100	120	870	1180	2540	4150	5720	9600	27400	35200	98000
Максимальная частота вращения	мин ⁻¹	20 000	20 000	20 000	18 000	16000	10 000	8 000	7 000	6 00	5 500	5 000	3000
Момент инерции	кгм ²	0,00010 0,000012	0,0006	0,0010	0,0064	0,012	0,038	0,09	0,16	0,69	1,56	2,49	6,2
Macca	кг	0,15 0,03	0,50	0,61	1,90	2,80	5,50	8,50	11,20	28,3	52,0	70,6	141
Рекомендуемый класс прочности крепежных болтов		6.8	6.8	6.8	8.8	8.8	8.8	8.8	9.8	9.8	9.8	9.8	9.8
Рекомендуемый мо- мент затяжки крепеж- ных болтов	Н∙м	4,0 1,5	7	14	35	65	110	300	400	800	2000	2000	4000

Муфта дисковая МК компенсирует осевое и угловое смещение. Радиальное смещение может быть скомпенсировано только при использовании пары муфт МК. Величина радиального смещения ΔR определяется угловым смещением и зависит от расстояния между муфтами (размер L):


$$\Delta R = L \times tg\Delta \varphi$$

Допускаемые величины осевого и углового смещения взаимозависимы. Увеличение осевого смещения требует пропорционального уменьшения углового смещения и наоборот. Указанная взаимозависимость показана на графике.

Характеристика осевой жесткости

